Improved side-chain modeling by coupling clash-detection guided iterative search with rotamer relaxation

نویسندگان

  • Yang Cao
  • Lin Song
  • Zhichao Miao
  • Yun Hu
  • Liqing Tian
  • Taijiao Jiang
چکیده

MOTIVATION Side-chain modeling has seen wide applications in computational structure biology. Most of the popular side-chain modeling programs explore the conformation space using discrete rigid rotamers for speed and efficiency. However, in the tightly packed environments of protein interiors, these methods will inherently lead to atomic clashes and hinder the prediction accuracy. RESULTS We present a side-chain modeling method (CIS-RR), which couples a novel clash-detection guided iterative search (CIS) algorithm with continuous torsion space optimization of rotamers (RR). Benchmark testing shows that compared with the existing popular side-chain modeling methods, CIS-RR removes atomic clashes much more effectively and achieves comparable or even better prediction accuracy while having comparable computational cost. We believe that CIS-RR could be a useful method for accurate side-chain modeling. AVAILABILITY CIS-RR is available to non-commercial users at our website: http://jianglab.ibp.ac.cn/lims/cisrr/cisrr.html.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved side-chain modeling for protein-protein docking.

Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient method for sampling off-rotamer side-chain...

متن کامل

Side-chain modeling with an optimized scoring function.

Modeling side-chain conformations on a fixed protein backbone has a wide application in structure prediction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring function, and search strategy. We have developed a new and simple scoring function, which operates on side-chain rotamers and consists of the following energy terms: contact surface, volume ov...

متن کامل

Andante: reducing side-chain rotamer search space during comparative modeling using environment-specific substitution probabilities

MOTIVATION The accurate placement of side chains in computational protein modeling and design involves the searching of vast numbers of rotamer combinations. RESULTS We have applied the information contained within structurally aligned homologous families, in the form of conserved chi angle conservation rules, to the problem of the comparative modeling. This allows the accurate borrowing of e...

متن کامل

Modeling Antibody Side Chain Conformations Using Heuristic Database Search

We have developed a knowledge-based system which models the side chain conformations of residues in the variable domains of antibody Fv fragments. The system is written in Prolog and uses an object-oriented database of aligned antibody structures in conjunction with a side chain rotamer library. The antibody database provides 3-dimensional clusters of side chain conformations which can be copie...

متن کامل

Design of a Rotamer Library for Coarse-Grained Models in Protein-Folding Simulations

Rotamer libraries usually contain geometric information to trace an amino acid side chain, atom by atom, onto a protein backbone. These libraries have been widely used in protein design, structure refinement and prediction, homology modeling, and X-ray and NMR structure validation. However, they usually present too much information and are not always fully compatible with the coarse-grained mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 27 6  شماره 

صفحات  -

تاریخ انتشار 2011